Solutions Exam Signals and Systems
22 januari 2015, 9:00-12:00

Problem 1: signals and spectra
Each part is worth 4 points.

(a) The first signal is clearly a sine with amplitude 4 and is periodic after 2 seconds, so its frequency is
0.5Hz. Its delay relative to a standard cosine is 0.5 seconds, which corresponds with a phase angle
of —7/2. We conclude z(t) = 4sin(nt) = 4 cos(nt —m/2). Similarly, the second signal is a cosine
with amplitude 1, and frequency SHz, so y(t) = cos(107t).

Careful inspection of the third plot shows that it is an AM signal that is constructed from the other
two plots: z(t) = x(t)y(t) = 4cos(nt — 7/2) cos(107t). Note, that we can rewrite this (using
formula 9 of the formula sheet) into z(t) = 2 cos(97t + 7/2) 4+ 2 cos(11nt — 7/2).
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(b) We use the inverse Euler formula cos(f) = <5
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(c) These plots can be made using the answers from part (b). Make sure that you put labels at the axis
(so f in Hz, or rad/s). Also, you need to specify for each frequency component the corresponding

phase angle.
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(d) A chirp signal is of the form z(t) = A cos(2rat® + 275t + ¢). Att = 0, the phase is zero, and the
deflection is 2, so we find ¢ = 0, and A = 2. The instantaneous frequency in Hz is the derivative
of the angle function divided by 27, i.e. f; = %(Ozt2 + ft) = 2at + B. Since fy = 220, we find
220 = 0a + B = [ = 220. Since f3 = 2320 and 5 = 220, we find 2320 = 6a. + 220. Hence,
a = 350. In conclusion, we find z(t) = 2 cos(2w350¢* + 27220¢).



Problem 2: Instantaneous frequency, spectrograms, and sampling
Parts (a), (b), and (c) are worth 4 points. Part (d) is worth 2 points.

(@) fi(t) = 5=4(2007t + 1007¢*) = 100t + 100.

(b) The spectrogram is simply the straight line f;(¢) from part (a).
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(c) We find the discrete frequencies wy = 7/2 and w; = 7/4:
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y[n] = y(n-Ts) = 6 cos( +7/2) = 6cos(ng +7/2) +cos(n% +7/2)

(d) The signal y(t) is frequency-limited, with the highest frequency being 15Hz. So, a sampling fre-
y g pling
quency greater than 30Hz (Nyquist freq.) is sufficient to avoid aliasing. Since the sampling fre-
quency is 60Hz, no aliasing will occur.

Problem 3: Fourier analysis Parts (a), (c), and (d) are worth 4 points. Part (b) is worth 8 points.

(a) Since Ty = 1/100, we have the base frequency f = 100Hz. Therefore, using the Fourier synthesis
formula, we find x(t) = 3 4 2 cos(27100t — 7/2) + 4 cos(27500t).
Hence, DC =3, A =2, fo = 100, ¢pg = —7/2, B =4, f; = 500, and ¢; = 0.

(b) According to the Fourier analysis formula we find:
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For the DC -term (i.e. k = 0, so e 72™/5 = ¢ = 1) this reduces to:
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For other £ we find:
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Note that we used e~72™* = 1 (for integer k) in the last step of this derivation.



(c) We can use the answer from (b), since y(¢) is simply the signal shifted by 1 second, i.e. a phase

(d)

shift of —27 /5. So, we simply find by, = e~ 92/%q;, = ;L (e_j4”k/5 — 1) for all k.
The signal is an AM-signal, which we first need to convert into a sum of cosines:
z(t) = 5+ 2sin(27120t) cos(2730t) = 5 + sin(27150t) + sin(27w90t)
= 5+ cos(2r150t — 7/2) + cos(2790t — 7/2)

Now, we can read the Fourier coefficients directly from the formula. However, we first need to
determine the fundamental frequency fo = ged(150,90) = 30Hz. So, the cases are k = 0, k = £3
and k£ = £5.
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0 for all other k&

Problem 4: LTI-systems
Each part is worth 5 points.

(a)

(b)

(©)

(d)

Causal: the output at location n is only dependent on the input at the locations n — k , where £ > 0.
Clearly, this is true for y,, while it is not for y; due to the index-flip at n = 0.

Linear: For a linear system F' we have F'(axo[n| + fx1[n]) = aF(x¢[n]) + SF(z1[n]) for all n.
This is clearly not true for yq since (ax[n — 1])% # a(z[n — 1]). The system y; is clearly linear.
Time invariant: shifting the output by a delay d results in the same signal as shifting the input by
the same delay, and compute the corresponding output. Clearly 1, is time invariant, but y; is not
due to the index-flip at n = 0. In conlusion:

system causal | linear | time invariant
voln] = (x[n —1])* | Yes | No Yes
y1[n] = 2x[—n] No Yes No
The output is the convolution y[n] =[1,2,3,2, 1]%[1,1,1,1,1,1,1,1,....] = [1,3,6,8,9,9,9,9,9, ...

where y[n] = 0 for n < 0.

The output of system h; will be the convolution [1,1, 1] % [1,0,1] = [1,1,2,1,1]. So, we search
for a system hy such that hs % [1,1,2,1,1] = [1,2,4,4,4,2, 1] = y[n]. The signal y has 7 samples,
while [1,1,2,1,1] has 5 samples. Therefore, hs has three samples, let us say hy = [a,b,c]. We
compute

la,b,c] % [1,1,2,1,1] = [a,a+b,2a+b+c,a+2b+c,a+b+2¢c,b+c,c] =[1,2,4,4,4,2,1]
Itis clear thata = b = ¢ = 1, so we find hy = [1, 1, 1].

Again, the output of system h; will be the convolution [1,1,1] % [1,0,1] = [1,1,2,1,1]. So, we
search for a system hy such that hy x x = hy x [1,0,1] = y — [1,1,2,1,1] = [0,2,1,2,1]. We
conclude that hy has 3 samples, i.e. hy = [a, b, c|]. We compute

la,b,c] % [1,0,1] = [a,b,a + ¢, b,c] =[0,2,1,2,1]
We find @ = 0, b = 2, and ¢ = 1. So, we find hy = [0, 2, 1].
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Problem S: frequency responses and z-transforms
Each part is worth 5 points.

(a) The system y[n] = +(x[n] +z[n — 1] + z[n — 2] + 2[n — 3] + x[n — 4] has the following frequency
response H (e’*) and system function H(z):

; 1 1 M| n
H(e™) = et ge*]w + 5e*j2w + ge*ﬁ“’ + e
1 1 1 1 1
H(Z) = 5 + 52’_1 + 52_2 + 52_3 —+ 32_4

(b) Using cos® = (e + ¢73%) /2, we find
H(z)=1—-2cos(@)z '+ 22 =1— (e +e )z 4272 = (1 -2 1) (1 — e 9927

We want H (z) = 0, so the roots are zy = e/* and 2; = e¢~“. The conclusion is that the frequencies
+& are completely removed by this system. So, if we feed this system x[n] = 1 + 3sin(nw), then
only the DC-term will “survive’, i.e. y[n] = [....,2 — 2 cos(w), 2 — 2 cos(w), 2 — 2 cos(w), ...

(c) The signal x[n] first needs to be written as a sum:

1
z[n] =1+ cos(%) cos(%) =1+ 3 <cos (?Z) + cos (717;”))

The DC-term is removed by h; = [1, —1]. Obviously, we can remove the two cosine-terms using a
24-point averager, so we find the system

hln] = [1,-1]*[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1]
= [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —1]
= 0[n] — o[n — 24]

The system function is therefore: H(z) =1 — 2724

The corresponding difference equation: y[n] = x[n] — x[n — 24]

[Note: we can find a more specific solution (but this was not asked for), by using the result of part (b). The two
cosine-terms are removed by hy = [1, a, 1] and hs = [1, B, 1] where a = —2 cos(n/12) and 3 = —2 cos(77/12). So,
the systemish = hlxhoxhy = [l,a+8—1,24af —a—B,a+ 8 —2a8,1 —a— (,—1]. This yields much more

complicated expressions. |

(d) Assume that Hs is the inverse of H;, and H, is a FIR filter. Then Hs(z)H;(z) = 1, which means

that Hy(z) = ﬁ(z) However, if H;(z) is a polynomial in 27!, then Hll(z) can not be a polynomial

in z~1, which is a contrasdiction with our assumption. We conclude that H, cannot be a FIR filter.




