Solutions Exam Signals and Systems 22 januari 2015, 9:00-12:00

Problem 1: signals and spectra

Each part is worth 4 points.
(a) The first signal is clearly a sine with amplitude 4 and is periodic after 2 seconds, so its frequency is 0.5 Hz . Its delay relative to a standard cosine is 0.5 seconds, which corresponds with a phase angle of $-\pi / 2$. We conclude $x(t)=4 \sin (\pi t)=4 \cos (\pi t-\pi / 2)$. Similarly, the second signal is a cosine with amplitude 1 , and frequency 5 Hz , so $y(t)=\cos (10 \pi t)$.

Careful inspection of the third plot shows that it is an AM signal that is constructed from the other two plots: $z(t)=x(t) y(t)=4 \cos (\pi t-\pi / 2) \cos (10 \pi t)$. Note, that we can rewrite this (using formula 9 of the formula sheet) into $z(t)=2 \cos (9 \pi t+\pi / 2)+2 \cos (11 \pi t-\pi / 2)$.
(b) We use the inverse Euler formula $\cos (\theta)=\frac{e^{j \theta}+e^{-j \theta}}{2}$.

$$
\begin{aligned}
& x(t)=-\cos (8 \pi t)=\cos (8 \pi t-\pi)=\frac{e^{j \pi} e^{j \pi 8 t}}{2}+\frac{e^{j \pi} e^{-j \pi 8 t}}{2} \\
& y(t)=4 \sin (\pi 6 t)=4 \cos (\pi 6 t-\pi / 2)=2 e^{-j \pi / 2} e^{j \pi 6 t}+2 e^{j \pi / 2} e^{-j \pi 6 t} \\
& z(t)=x(t) y(t)=e^{j \pi / 2} e^{j \pi 14 t}+e^{-j \pi / 2} e^{-j \pi 14 t}+e^{-j \pi / 2} e^{j \pi 2 t}+e^{j \pi / 2} e^{-j \pi 2 t}
\end{aligned}
$$

(c) These plots can be made using the answers from part (b). Make sure that you put labels at the axis (so f in Hz , or rad/s). Also, you need to specify for each frequency component the corresponding phase angle.

\qquad
(d) A chirp signal is of the form $x(t)=A \cos \left(2 \pi \alpha t^{2}+2 \pi \beta t+\phi\right)$. At $t=0$, the phase is zero, and the deflection is 2 , so we find $\phi=0$, and $A=2$. The instantaneous frequency in Hz is the derivative of the angle function divided by 2π, i.e. $f_{i}=\frac{d}{d t}\left(\alpha t^{2}+\beta t\right)=2 \alpha t+\beta$. Since $f_{0}=220$, we find $220=0 \alpha+\beta=\beta=220$. Since $f_{3}=2320$ and $\beta=220$, we find $2320=6 \alpha+220$. Hence, $\alpha=350$. In conclusion, we find $x(t)=2 \cos \left(2 \pi 350 t^{2}+2 \pi 220 t\right)$.

Problem 2: Instantaneous frequency, spectrograms, and sampling

Parts (a), (b), and (c) are worth 4 points. Part (d) is worth 2 points.
(a) $f_{i}(t)=\frac{1}{2 \pi} \frac{d}{d t}\left(200 \pi t+100 \pi t^{2}\right)=100 t+100$.
(b) The spectrogram is simply the straight line $f_{i}(t)$ from part (a).

(c) We find the discrete frequencies $\hat{\omega}_{0}=\pi / 2$ and $\hat{\omega}_{1}=\pi / 4$:

$$
y[n]=y\left(n \cdot T_{s}\right)=6 \cos \left(\frac{30 \pi n}{60}+\pi / 2\right)+\cos \left(\frac{15 \pi n}{60}+\pi / 2\right)=6 \cos \left(n \frac{\pi}{2}+\pi / 2\right)+\cos \left(n \frac{\pi}{4}+\pi / 2\right)
$$

(d) The signal $y(t)$ is frequency-limited, with the highest frequency being 15 Hz . So, a sampling frequency greater than 30 Hz (Nyquist freq.) is sufficient to avoid aliasing. Since the sampling frequency is 60 Hz , no aliasing will occur.

Problem 3: Fourier analysis Parts (a), (c), and (d) are worth 4 points. Part (b) is worth 8 points.
(a) Since $T_{0}=1 / 100$, we have the base frequency $f=100 \mathrm{~Hz}$. Therefore, using the Fourier synthesis formula, we find $x(t)=3+2 \cos (2 \pi 100 t-\pi / 2)+4 \cos (2 \pi 500 t)$.
Hence, $D C=3, A=2, f_{0}=100, \phi_{0}=-\pi / 2, B=4, f_{1}=500$, and $\phi_{1}=0$.
(b) According to the Fourier analysis formula we find:

$$
a_{k}=\frac{1}{T_{0}} \int_{0}^{T_{0}} x(t) e^{-j\left(2 \pi / T_{0}\right) k t} d t=\frac{1}{5}\left(\int_{0}^{1} e^{-j 2 \pi k t / 5} d t+\int_{4}^{5} e^{-j 2 \pi k t / 5} d t\right)
$$

For the DC -term (i.e. $k=0$, so $e^{-j 2 \pi k t / 5}=e^{0}=1$) this reduces to:

$$
a_{0}=\frac{1}{5}\left(\int_{0}^{1} 1 d t+\int_{4}^{5} 1 d t\right)=\frac{1}{5}(1-0+5-4)=\frac{2}{5}
$$

For other k we find:

$$
\begin{aligned}
a_{k} & =\frac{1}{5}\left(\left[\frac{e^{-j 2 \pi k t / 5}}{-j 2 \pi k / 5}\right]_{t=0}^{t=1}+\left[\frac{e^{-j 2 \pi k t / 5}}{-j 2 \pi k / 5}\right]_{t=4}^{t=5}\right)=\frac{j}{2 \pi k}\left(\left[e^{-j 2 \pi k t / 5}\right]_{t=0}^{t=1}+\left[e^{-j 2 \pi k t / 5}\right]_{t=4}^{t=5}\right) \\
& =\frac{j}{2 \pi k}\left(e^{-j 2 \pi k / 5}-1+e^{-j 2 \pi k}-e^{-j 8 \pi k / 5}\right) \\
& =\frac{j}{2 \pi k}\left(e^{-j 2 \pi k / 5}-e^{-j 8 \pi k / 5}\right)
\end{aligned}
$$

Note that we used $e^{-j 2 \pi k}=1$ (for integer k) in the last step of this derivation.
(c) We can use the answer from (b), since $y(t)$ is simply the signal shifted by 1 second, i.e. a phase shift of $-2 \pi / 5$. So, we simply find $b_{k}=e^{-j 2 \pi / 5} a_{k}=\frac{j}{2 \pi k}\left(e^{-j 4 \pi k / 5}-1\right)$ for all k.
(d) The signal is an AM-signal, which we first need to convert into a sum of cosines:

$$
\begin{aligned}
z(t) & =5+2 \sin (2 \pi 120 t) \cos (2 \pi 30 t)=5+\sin (2 \pi 150 t)+\sin (2 \pi 90 t) \\
& =5+\cos (2 \pi 150 t-\pi / 2)+\cos (2 \pi 90 t-\pi / 2)
\end{aligned}
$$

Now, we can read the Fourier coefficients directly from the formula. However, we first need to determine the fundamental frequency $f_{0}=\operatorname{gcd}(150,90)=30 \mathrm{~Hz}$. So, the cases are $k=0, k= \pm 3$ and $k= \pm 5$.

$$
a_{k}= \begin{cases}\frac{1}{2} e^{j \pi / 2} & \text { for } k=-5 \\ \frac{1}{2} e^{j \pi / 2} & \text { for } k=-3 \\ 5 & \text { for } k=0 \text { (DC-term) } \\ \frac{1}{2} e^{-j \pi / 2} & \text { for } k=3 \\ \frac{1}{2} e^{-j \pi / 2} & \text { for } k=5 \\ 0 & \text { for all other } k\end{cases}
$$

Problem 4: LTI-systems

Each part is worth 5 points.
(a) Causal: the output at location n is only dependent on the input at the locations $n-k$, where $k \geq 0$. Clearly, this is true for y_{0}, while it is not for y_{1} due to the index-flip at $n=0$.
Linear: For a linear system F we have $F\left(\alpha x_{0}[n]+\beta x_{1}[n]\right)=\alpha F\left(x_{0}[n]\right)+\beta F\left(x_{1}[n]\right)$ for all n. This is clearly not true for y_{0} since $(\alpha x[n-1])^{2} \neq \alpha(x[n-1])^{2}$. The system y_{1} is clearly linear. Time invariant: shifting the output by a delay d results in the same signal as shifting the input by the same delay, and compute the corresponding output. Clearly y_{0} is time invariant, but y_{1} is not due to the index-flip at $n=0$. In conlusion:

system	causal	linear	time invariant
$y_{0}[n]=(x[n-1])^{2}$	Yes	No	Yes
$y_{1}[n]=2 x[-n]$	No	Yes	No

(b) The output is the convolution $\mathrm{y}[\mathrm{n}]=[1,2,3,2,1] *[1,1,1,1,1,1,1,1, \ldots]=.[1,3,6,8,9,9,9,9,9, \ldots]$, where $y[n]=0$ for $n<0$.
(c) The output of system h_{1} will be the convolution $[1,1,1] *[1,0,1]=[1,1,2,1,1]$. So, we search for a system h_{2} such that $h_{2} *[1,1,2,1,1]=[1,2,4,4,4,2,1]=y[n]$. The signal y has 7 samples, while $[1,1,2,1,1]$ has 5 samples. Therefore, h_{2} has three samples, let us say $h_{2}=[a, b, c]$. We compute

$$
[a, b, c] *[1,1,2,1,1]=[a, a+b, 2 a+b+c, a+2 b+c, a+b+2 c, b+c, c]=[1,2,4,4,4,2,1]
$$

It is clear that $a=b=c=1$, so we find $h_{2}=[1,1,1]$.
(d) Again, the output of system h_{1} will be the convolution $[1,1,1] *[1,0,1]=[1,1,2,1,1]$. So, we search for a system h_{2} such that $h_{2} * x=h_{2} *[1,0,1]=y-[1,1,2,1,1]=[0,2,1,2,1]$. We conclude that h_{2} has 3 samples, i.e. $h_{2}=[a, b, c]$. We compute

$$
[a, b, c] *[1,0,1]=[a, b, a+c, b, c]=[0,2,1,2,1]
$$

We find $a=0, b=2$, and $c=1$. So, we find $h_{2}=[0,2,1]$.

Problem 5: frequency responses and z-transforms

Each part is worth 5 points.
(a) The system $y[n]=\frac{1}{5}(x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]$ has the following frequency response $H\left(e^{j \omega}\right)$ and system function $H(z)$:

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =\frac{1}{5}+\frac{1}{5} e^{-j \hat{\omega}}+\frac{1}{5} e^{-j 2 \hat{\omega}}+\frac{1}{5} e^{-j 3 \hat{\omega}}+\frac{1}{5} e^{-j 4 \hat{\omega}} \\
H(z) & =\frac{1}{5}+\frac{1}{5} z^{-1}+\frac{1}{5} z^{-2}+\frac{1}{5} z^{-3}+\frac{1}{5} z^{-4}
\end{aligned}
$$

(b) Using $\cos \theta=\left(e^{j \theta}+e^{-j \theta}\right) / 2$, we find

$$
H(z)=1-2 \cos (\hat{\omega}) z^{-1}+z^{-2}=1-\left(e^{j \hat{\omega}}+e^{-j \hat{\omega}}\right) z^{-1}+z^{-2}=\left(1-e^{j \hat{\omega}} z^{-1}\right)\left(1-e^{-j \hat{\omega}} z^{-1}\right)
$$

We want $H(z)=0$, so the roots are $z_{0}=e^{j \hat{\omega}}$ and $z_{1}=e^{-j \hat{\omega}}$. The conclusion is that the frequencies $\pm \hat{\omega}$ are completely removed by this system. So, if we feed this system $x[n]=1+3 \sin (n \hat{\omega})$, then only the DC -term will 'survive', i.e. $y[n]=[\ldots, 2-2 \cos (\hat{\omega}), 2-2 \cos (\hat{\omega}), 2-2 \cos (\hat{\omega}), \ldots$.$] .$
(c) The signal $x[n]$ first needs to be written as a sum:

$$
x[n]=1+\cos \left(\frac{\pi n}{3}\right) \cos \left(\frac{\pi n}{4}\right)=1+\frac{1}{2}\left(\cos \left(\frac{\pi n}{12}\right)+\cos \left(\frac{7 \pi n}{12}\right)\right)
$$

The DC-term is removed by $h_{1}=[1,-1]$. Obviously, we can remove the two cosine-terms using a 24-point averager, so we find the system

$$
\begin{aligned}
h[n] & =[1,-1] *[1,1] \\
& =[1,0,-1] \\
& =\delta[n]-\delta[n-24]
\end{aligned}
$$

The system function is therefore: $H(z)=1-z^{-24}$
The corresponding difference equation: $y[n]=x[n]-x[n-24]$
[Note: we can find a more specific solution (but this was not asked for), by using the result of part (b). The two cosine-terms are removed by $h_{2}=[1, \alpha, 1]$ and $h_{3}=[1, \beta, 1]$ where $\alpha=-2 \cos (\pi / 12)$ and $\beta=-2 \cos (7 \pi / 12)$. So, the system is $h=h 1 * h_{2} * h_{3}=[1, \alpha+\beta-1,2+\alpha \beta-\alpha-\beta, \alpha+\beta-2 \alpha \beta, 1-\alpha-\beta,-1]$. This yields much more complicated expressions.]
(d) Assume that H_{2} is the inverse of H_{1}, and H_{2} is a FIR filter. Then $H_{2}(z) H_{1}(z)=1$, which means that $H_{2}(z)=\frac{1}{H_{1}(z)}$. However, if $H_{1}(z)$ is a polynomial in z^{-1}, then $\frac{1}{H_{1}(z)}$ can not be a polynomial in z^{-1}, which is a contrasdiction with our assumption. We conclude that H_{2} cannot be a FIR filter.

