
Solutions Exam Signals and Systems
22 januari 2015, 9:00-12:00

Problem 1: signals and spectra
Each part is worth 4 points.

(a) The first signal is clearly a sine with amplitude 4 and is periodic after 2 seconds, so its frequency is
0.5Hz. Its delay relative to a standard cosine is 0.5 seconds, which corresponds with a phase angle
of−π/2. We conclude x(t) = 4 sin(πt) = 4 cos(πt−π/2). Similarly, the second signal is a cosine
with amplitude 1, and frequency 5Hz, so y(t) = cos(10πt).

Careful inspection of the third plot shows that it is an AM signal that is constructed from the other
two plots: z(t) = x(t)y(t) = 4 cos(πt − π/2) cos(10πt). Note, that we can rewrite this (using
formula 9 of the formula sheet) into z(t) = 2 cos(9πt+ π/2) + 2 cos(11πt− π/2).

(b) We use the inverse Euler formula cos(θ) = ejθ+e−jθ

2
.

x(t) = − cos(8πt) = cos(8πt− π) = ejπejπ8t

2
+
ejπe−jπ8t

2
y(t) = 4 sin(π6t) = 4 cos(π6t− π/2) = 2e−jπ/2ejπ6t + 2ejπ/2e−jπ6t

z(t) = x(t)y(t) = ejπ/2ejπ14t + e−jπ/2e−jπ14t + e−jπ/2ejπ2t + ejπ/2e−jπ2t

(c) These plots can be made using the answers from part (b). Make sure that you put labels at the axis
(so f in Hz, or rad/s). Also, you need to specify for each frequency component the corresponding
phase angle.
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(d) A chirp signal is of the form x(t) = A cos(2παt2 +2πβt+ φ). At t = 0, the phase is zero, and the
deflection is 2, so we find φ = 0, and A = 2. The instantaneous frequency in Hz is the derivative
of the angle function divided by 2π, i.e. fi = d

dt
(αt2 + βt) = 2αt + β. Since f0 = 220, we find

220 = 0α + β = β = 220. Since f3 = 2320 and β = 220, we find 2320 = 6α + 220. Hence,
α = 350. In conclusion, we find x(t) = 2 cos(2π350t2 + 2π220t).



Problem 2: Instantaneous frequency, spectrograms, and sampling
Parts (a), (b), and (c) are worth 4 points. Part (d) is worth 2 points.

(a) fi(t) = 1
2π

d
dt
(200πt+ 100πt2) = 100t+ 100.

(b) The spectrogram is simply the straight line fi(t) from part (a).

10 2

f (in Hz)

100

200

300

400

t (in sec.)

(c) We find the discrete frequencies ω̂0 = π/2 and ω̂1 = π/4:

y[n] = y(n · Ts) = 6 cos(
30πn

60
+ π/2) + cos(

15πn

60
+ π/2) = 6 cos(n

π

2
+ π/2) + cos(n

π

4
+ π/2)

(d) The signal y(t) is frequency-limited, with the highest frequency being 15Hz. So, a sampling fre-
quency greater than 30Hz (Nyquist freq.) is sufficient to avoid aliasing. Since the sampling fre-
quency is 60Hz, no aliasing will occur.

Problem 3: Fourier analysis Parts (a), (c), and (d) are worth 4 points. Part (b) is worth 8 points.

(a) Since T0 = 1/100, we have the base frequency f = 100Hz. Therefore, using the Fourier synthesis
formula, we find x(t) = 3 + 2 cos(2π100t− π/2) + 4 cos(2π500t).
Hence, DC = 3, A = 2, f0 = 100, φ0 = −π/2, B = 4, f1 = 500, and φ1 = 0.

(b) According to the Fourier analysis formula we find:

ak =
1

T0

∫ T0

0
x(t)e−j(2π/T0)kt dt =

1

5

(∫ 1

0
e−j2πkt/5 dt+

∫ 5

4
e−j2πkt/5 dt

)

For the DC -term (i.e. k = 0, so e−j2πkt/5 = e0 = 1) this reduces to:

a0 =
1

5

(∫ 1

0
1 dt+

∫ 5

4
1 dt

)
=

1

5
(1− 0 + 5− 4) =

2

5

For other k we find:
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)
Note that we used e−j2πk = 1 (for integer k) in the last step of this derivation.



(c) We can use the answer from (b), since y(t) is simply the signal shifted by 1 second, i.e. a phase
shift of −2π/5. So, we simply find bk = e−j2π/5ak =

j
2πk

(
e−j4πk/5 − 1

)
for all k.

(d) The signal is an AM-signal, which we first need to convert into a sum of cosines:

z(t) = 5 + 2 sin(2π120t) cos(2π30t) = 5 + sin(2π150t) + sin(2π90t)

= 5 + cos(2π150t− π/2) + cos(2π90t− π/2)

Now, we can read the Fourier coefficients directly from the formula. However, we first need to
determine the fundamental frequency f0 = gcd(150, 90) = 30Hz. So, the cases are k = 0, k = ±3
and k = ±5.
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Problem 4: LTI-systems
Each part is worth 5 points.

(a) Causal: the output at location n is only dependent on the input at the locations n−k , where k ≥ 0.
Clearly, this is true for y0, while it is not for y1 due to the index-flip at n = 0.
Linear: For a linear system F we have F (αx0[n] + βx1[n]) = αF (x0[n]) + βF (x1[n]) for all n.
This is clearly not true for y0 since (αx[n− 1])2 6= α(x[n− 1])2. The system y1 is clearly linear.
Time invariant: shifting the output by a delay d results in the same signal as shifting the input by
the same delay, and compute the corresponding output. Clearly y0 is time invariant, but y1 is not
due to the index-flip at n = 0. In conlusion:

system causal linear time invariant
y0[n] = (x[n− 1])2 Yes No Yes
y1[n] = 2x[−n] No Yes No

(b) The output is the convolution y[n] = [1, 2, 3, 2, 1]∗[1, 1, 1, 1, 1, 1, 1, 1, ....] = [1, 3, 6, 8, 9, 9, 9, 9, 9, ....],
where y[n] = 0 for n < 0.

(c) The output of system h1 will be the convolution [1, 1, 1] ∗ [1, 0, 1] = [1, 1, 2, 1, 1]. So, we search
for a system h2 such that h2 ∗ [1, 1, 2, 1, 1] = [1, 2, 4, 4, 4, 2, 1] = y[n]. The signal y has 7 samples,
while [1, 1, 2, 1, 1] has 5 samples. Therefore, h2 has three samples, let us say h2 = [a, b, c]. We
compute

[a, b, c] ∗ [1, 1, 2, 1, 1] = [a, a+ b, 2a+ b+ c, a+ 2b+ c, a+ b+ 2c, b+ c, c] = [1, 2, 4, 4, 4, 2, 1]

It is clear that a = b = c = 1, so we find h2 = [1, 1, 1].

(d) Again, the output of system h1 will be the convolution [1, 1, 1] ∗ [1, 0, 1] = [1, 1, 2, 1, 1]. So, we
search for a system h2 such that h2 ∗ x = h2 ∗ [1, 0, 1] = y − [1, 1, 2, 1, 1] = [0, 2, 1, 2, 1]. We
conclude that h2 has 3 samples, i.e. h2 = [a, b, c]. We compute

[a, b, c] ∗ [1, 0, 1] = [a, b, a+ c, b, c] = [0, 2, 1, 2, 1]

We find a = 0, b = 2, and c = 1. So, we find h2 = [0, 2, 1].



Problem 5: frequency responses and z-transforms
Each part is worth 5 points.

(a) The system y[n] = 1
5
(x[n] + x[n− 1]+ x[n− 2]+ x[n− 3]+ x[n− 4] has the following frequency

response H(ejω) and system function H(z):
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(b) Using cos θ = (ejθ + e−jθ)/2, we find

H(z) = 1− 2 cos(ω̂)z−1 + z−2 = 1− (ejω̂ + e−jω̂)z−1 + z−2 = (1− ejω̂z−1)(1− e−jω̂z−1)

We want H(z) = 0, so the roots are z0 = ejω̂ and z1 = e−jω̂. The conclusion is that the frequencies
±ω̂ are completely removed by this system. So, if we feed this system x[n] = 1 + 3 sin(nω̂), then
only the DC-term will ’survive’, i.e. y[n] = [...., 2− 2 cos(ω̂), 2− 2 cos(ω̂), 2− 2 cos(ω̂), ....].

(c) The signal x[n] first needs to be written as a sum:

x[n] = 1 + cos(
πn

3
) cos(

πn

4
) = 1 +

1

2

(
cos

(
πn

12

)
+ cos

(
7πn

12

))
The DC-term is removed by h1 = [1,−1]. Obviously, we can remove the two cosine-terms using a
24-point averager, so we find the system

h[n] = [1,−1] ∗ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1]
= δ[n]− δ[n− 24]

The system function is therefore: H(z) = 1− z−24

The corresponding difference equation: y[n] = x[n]− x[n− 24]

[Note: we can find a more specific solution (but this was not asked for), by using the result of part (b). The two
cosine-terms are removed by h2 = [1, α, 1] and h3 = [1, β, 1] where α = −2 cos(π/12) and β = −2 cos(7π/12). So,
the system is h = h1 ∗ h2 ∗ h3 = [1, α+ β− 1, 2+αβ−α− β, α+ β− 2αβ, 1−α− β,−1]. This yields much more
complicated expressions.]

(d) Assume that H2 is the inverse of H1, and H2 is a FIR filter. Then H2(z)H1(z) = 1, which means
that H2(z) =

1
H1(z)

. However, if H1(z) is a polynomial in z−1, then 1
H1(z)

can not be a polynomial
in z−1, which is a contrasdiction with our assumption. We conclude that H2 cannot be a FIR filter.


